

# Acquired SAA: place of immunosuppression and TPO recetor agonists in 2022

Régis Peffault de Latour, MD, PhD

French reference center for aplastic anemia & PNH
French network for rare immunological & hematological disorders (MaRIH)
Severe aplastic anemia working party of EBMT (SAAWP EBMT)
Hôpital Saint-Louis, Paris, France

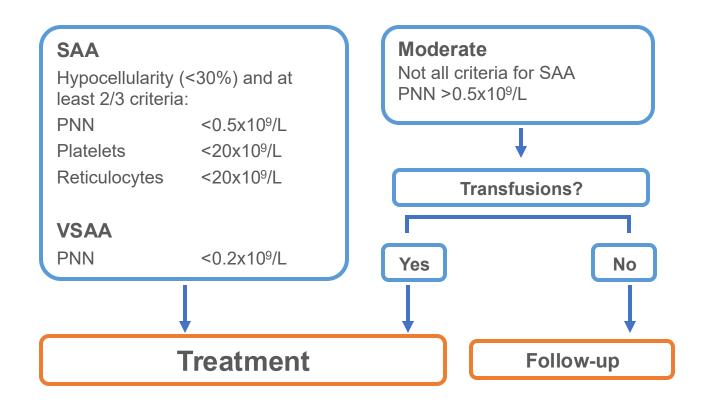


### **Disclosures**

- Expert consultant / speaker: Alexion, Amgen, Apellis, Jazz, Novartis, Pfizer, Roche & Samsung
- Research grant: Alexion, Novartis & Pfizer






### **Patient case**

- Male, 17 years old
- Aplastic anemia:
  - Hb: 4.8 g/dL; Neutrophils: 0.75 x 10<sup>9</sup>/L; Platelets: 11 x 10<sup>9</sup>/L;
     Reticulocytes: 35 x 10<sup>9</sup>/L)
  - Cytogenetics showed a normal male karyotype
  - Hypocellular bone marrow (<5%) with no dysplasia</li>
- Acquired:
  - Normal CBCs 10 years before
  - No family history
  - Normal physical exam
  - PNH positive (3%) FA & Telomeropathy negative

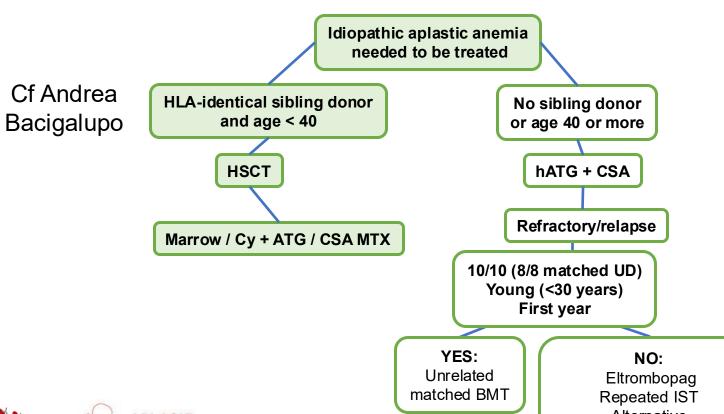




### When should we start a treatment?



### **Patient case**


- Male, 17 years old
- Aplastic anemia:
  - Hb: 4.8 g/dL; Neutrophils: 0.75 x 10<sup>9</sup>/L; Platelets: 11 x 10<sup>9</sup>/L;
     Reticulocytes: 35 x 10<sup>9</sup>/L)
  - Cytogenetics showed a normal male karyotype
  - Hypocellular bone marrow (<5%) with no dysplasia</li>
- Acquired:
  - Normal CBCs 10 years before
  - No family history
  - Normal physical exam
  - PNH positive (3%) FA & Telomeropathy negative

1 sibling available





# **Treatment (guidelines)**

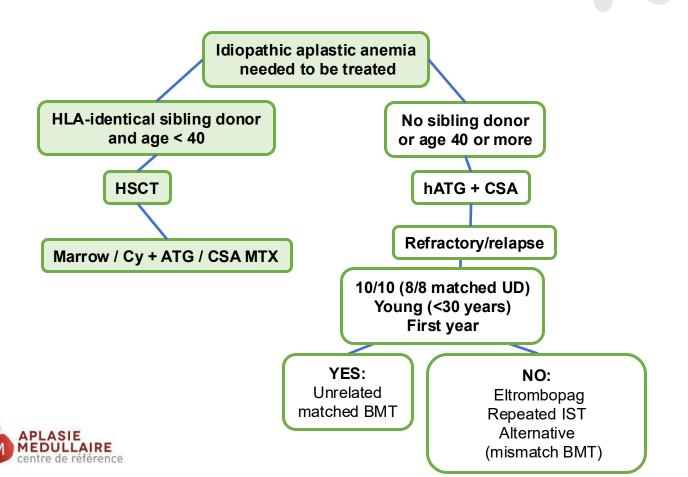




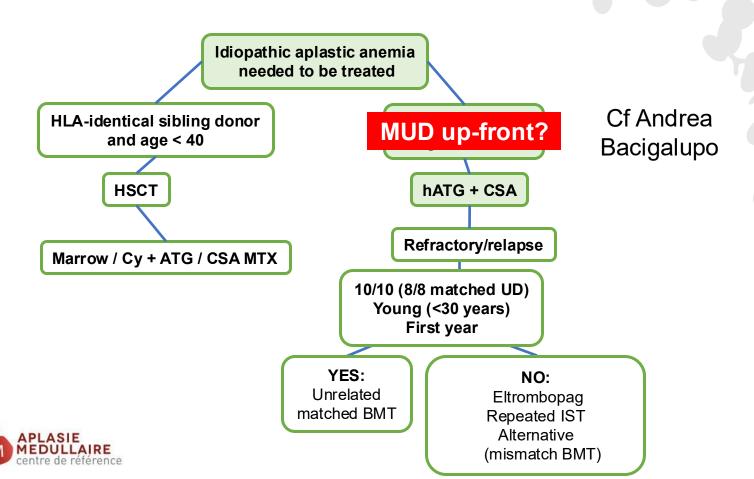


Alternative (mismatch BMT)

### **Patient case**


- Male, 17 years old
- Aplastic anemia:
  - Hb: 4.8 g/dL; Neutrophils: 0.75 x  $10^9$ /L; Platelets: 11 x  $10^9$ /L; Reticulocytes: 35 x  $10^9$ /L)
  - Cytogenetics showed a normal male karyotype
  - Hypocellular bone marrow (<5%) with no dysplasia</li>
- Acquired:
  - Normal CBCs 10 years before
  - No family history
  - Normal physical exam
  - PNH positive (3%) FA & Telomeropathy negative

No sibling but good probability for a 10/10 unrelated donor





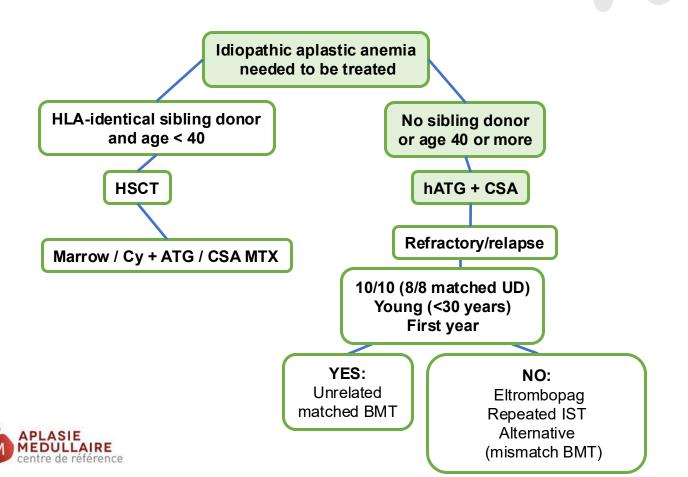

## **Treatment (guidelines)**



# **Treatment (guidelines)**

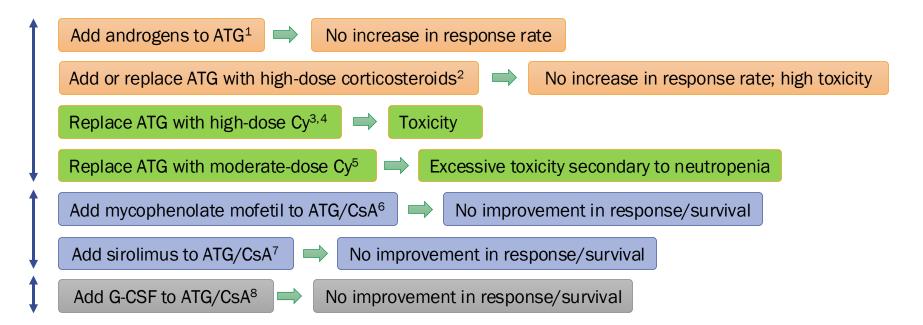


### **Patient case**


- Male, 17 years old
- Aplastic anemia:
  - Hb: 4.8 g/dL; Neutrophils: 0.75 x  $10^9$ /L; Platelets: 11 x  $10^9$ /L; Reticulocytes: 35 x  $10^9$ /L)
  - Cytogenetics showed a normal male karyotype
  - Hypocellular bone marrow (<5%) with no dysplasia</li>
- Acquired:
  - Normal CBCs 10 years before
  - No family history
  - Normal physical exam
  - PNH positive (3%) FA & Telomeropathy negative

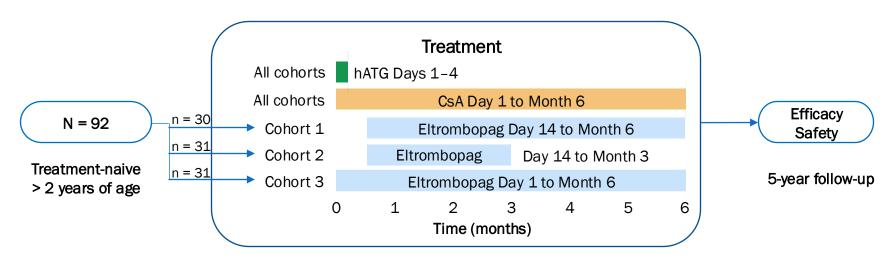
No sibling
No 10/10
Only 9/10 CB or
haplo donor






## **Treatment (guidelines)**




## How to improve immunosuppression?

 Standard IST for patients with SAA/vSAA who are not eligible for HSCT is horse antithymocyte globulin (hATG) plus ciclosporin (CsA) since 30 years



## **Eltrombopag first line?**

 A phase 2, open-label, interventional, single-arm, sequential cohort study of eltrombopag in combination with immunosuppression in the first-line treatment of patients with SAA

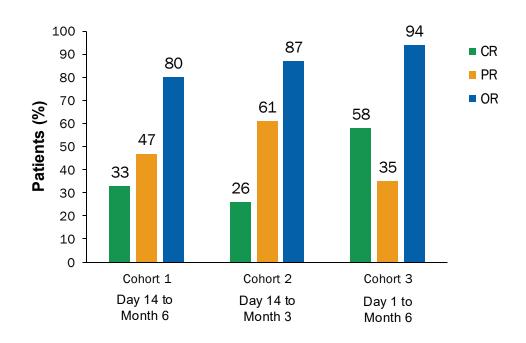


## **Eltrombopag first line?**

#### At 6 months

#### CR

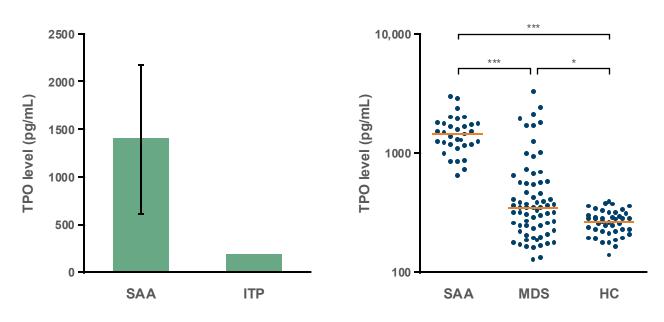
- Platelet count 100 × 10<sup>9</sup>/L
- Neutrophil count ≥ 1 × 10<sup>9</sup>/L
- Hemoglobin level 10 g/dL


#### PR

 Blood counts not meeting criteria for SAA or CR

#### **Historical controls IST only**

**CR 17%** 

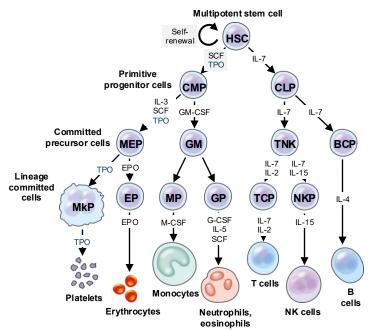

**OR 68%** 



Period of eltrombopag administration

# Eltrombopag a surprise? Yes!

Serum TPO levels are markedly elevated in patients with aplastic anemia




\*\*\*P<0.001;\*P<0.05 Feng X et al. Haematologica 2011;96:602–606

### Eltrombopag a surprise? Possibly not...

- TPO, acting through TPO-R, is essential for normal thrombopoiesis<sup>1</sup>
- TPO-R (c-mpl) is expressed on HSCs<sup>2</sup>
- C-mpl and TPO knock out mice have a reduced number of HSCs
- TPO is able to explend HSCs in vitro<sup>2,3</sup>
- Patients with congenital amegacaryocytosis may eventually evolved to bone marrow failure

#### TPO: Role in Hematopoiesis



BCP, B-cell progenitor; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; EP, enythroid progenitor; EPO, enythropcietin; GM, granulocyte-macrophage progenitor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GP, granulocyte progenitor; HSC, hematopoietic stem celt; IL, interleukin; MEP, megakaryocyte erythroid progenitor; MkP, megakaryocyte progenitor; MP, morrocyte progenitor; NK, natural killer, cell progenitor; RBC, red blood cell; SCF, stem cell factor; TCP, T cell progenitor; TNK, T cell natural killer cell progenitor; TPO, thrombopoietin; TPO-R, TPO receptor, WBC, white blood cell. 1.4. Kausharisky K. Stem Cells 1997;15:97–103;

2. Jacobsen SE et al. Stem Cells 1996(Suppl 1):173–180; 3. Robb L et al. Cytokine 2007;26:6715–6723

# Eltrombopag mechanism of action (...)

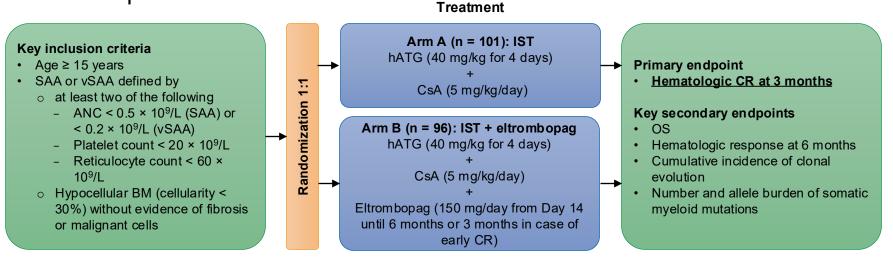
- The mechanism of action of EPAG in AA still requires further investigation.
- Several data have shown that EPAG stimulates hematopoiesis despite high levels of endogenous thrombopoietin (Olnes et al NEJM 2012; Desmond et al Blood 2014). However, it is not clear whether this action is exerted at the level of hematopoietic stem cells or on more mature progenitor cells (i.e., increasing the ratio of progenitor/stem cells).
- In addition to its direct stimulatory action on hematopoiesis, EPAG might also contribute to the immunosuppressive effect of ATG and CsA. Indeed, a recent study has shown that EPAG, through its binding to the transmembrane domain of the thrombopoietin receptor, prevents the inhibitory effect of IFN-γ by interrupting the interaction between endogenous thrombopoietin and its cognate receptor (i.e., serving as a decoy receptor) (Alvarado LJ et al Blood 2019).
- Iron chelator? (Vlachodimitropoulou E et al Blood 2017)



# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 181

IANUARY 6, 202


OL. 386 NO. 1

# Results of the EBMT SAAWP Phase III Prospective Randomized Multicenter RACE Study of Horse ATG and Ciclosporin with or without Eltrombopag in naïve SAA patients

Régis Peffault de Latour, MD, PhD<sup>1,2\*</sup>, Judith C.W. Marsh, MD, FRCPath<sup>3</sup>, Simona Iacobelli<sup>2,4\*</sup>, Sofie R. Terwel, MSc<sup>2\*</sup>, Anita Hill, MD PhD<sup>5\*</sup>, Constantijn J.M. Halkes, MD<sup>6</sup>, Christian Recher, MD, PhD<sup>7</sup>, Fiorenza Barraco, MD<sup>8\*</sup>, Edouard Forcade, MD<sup>9</sup>, Juan Carlos Vallejo Llamas<sup>10\*</sup>, Beatrice Drexler, MD<sup>11\*</sup>, Jean-Baptiste Mear, MD<sup>12\*</sup>, Maria Teresa van Lint<sup>13\*</sup>, Reinier A.P. Raymakers, MD PhD<sup>14\*</sup>, Marco R De Groot, MD, PhD<sup>15</sup>, Etienne Daguindau<sup>16\*</sup>, Erfan Nur, MD, PhD<sup>17</sup>, Wilma Barcellini<sup>18\*</sup>, Nigel H. Russell, MD<sup>19</sup>, Louis Terriou, MD<sup>20\*</sup>, Anna Paola Iori, MD<sup>21\*</sup>, Isabel Sánchez- Ortega<sup>22\*</sup>, Blanca Xicoy, MD, MSc<sup>23\*</sup>, Isidro Jarque<sup>24\*</sup>, James Cavenagh<sup>25</sup>, Flore Sicre de Fontbrune<sup>1\*</sup>, Austin Kulasekararaj, MD, MBBS, MRCP, FRCPath<sup>3</sup>, Serena Marotta<sup>26\*</sup>, Talha Munir, MD<sup>5\*</sup>, Jennifer M.L. Tjon, MD, PhD<sup>6\*</sup>, Suzanne Tavitian, MD<sup>7\*</sup>, Aline Praire<sup>8\*</sup>, Laurence Clement<sup>9\*</sup>, Florence Rabian, MD<sup>27\*</sup>, Alexander E Smith, PhD<sup>3\*</sup>, Riley Cook, MD<sup>3\*</sup>, Luana Marano<sup>26\*</sup>, Morag Griffin, MD<sup>5\*</sup>, Elena Palmisani<sup>28\*</sup>, Petra Muus, MD, PhD<sup>3</sup>, Fabiana Cacace<sup>26\*</sup>, Jakob R. Passweg, MD, MS<sup>11</sup>, Gerard Socie, MD, PhD<sup>1</sup>, Ghulam J. Mufti, MBBS, FRCP, FRCPath, DM<sup>3\*</sup>, Carlo Dufour<sup>2,28</sup> and Antonio M. Risitano, MD, PhD<sup>2,26</sup>

### Race design

 The RACE trial is an investigator-driven, open-label, phase 3, randomized trial comparing the combination of hATG, CsA, and eltrombopag with IST alone in patients with SAA



Central laboratory King's college, London

Stratification based on disease severity, age and center

# RACE definitions & study design

#### RACE criteria for response

- CR: Hb >100 g/L, neutrophils >1.0x109/L and platelets >100x109/L
- PR: no longer meets SAA criteria, <u>Transfusion independence</u>, Hb >8gr/dL, neutrophils >0.5x109/L and platelets >20x109/L
- NR: not meeting criteria for response

#### Clonal evolution

 $\circ$  Acute leukemia, myelodysplastic syndrome and/or new karyotypic abnormality

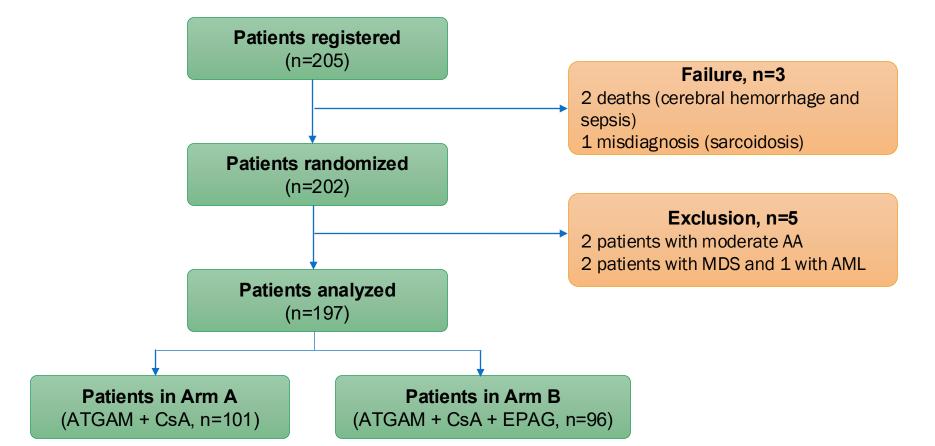
#### Primary endpoint

To detect an increase in CR from 7% in arm A to 21% in arm B at 3m (at least 96 patients per arm)

# **NIH study versus RACE**

|                                 | NIH study¹                                       | RACE <sup>2</sup>                        |  |  |
|---------------------------------|--------------------------------------------------|------------------------------------------|--|--|
| Study design                    | Non-randomized,<br>historically controlled       | Randomized, controlled                   |  |  |
| CsA treatment duration          | 6 months + low dose for<br>up to 24 months       | 1 year + low dose for<br>up to 24 months |  |  |
| Eltrombopag initiation          | On Day 1 in Cohort 3 On Day 14 in Cohort 1 and 2 | On Day 14                                |  |  |
| Eltrombopag treatment duration  | 6 months in Cohort 1 and 3 months in Cohort 2    | 6 months<br>3 months with early CR       |  |  |
| Primary endpoint                | CR and PR at 6 months                            | CR at 3 months                           |  |  |
| Criteria for response           | PR: transfusion independency not needed          | PR: transfusion independency required    |  |  |
| Minimum age of inclusion, years | 2                                                | 15                                       |  |  |
| Median age of patients, years   | 32                                               | 53                                       |  |  |

# RACE trial

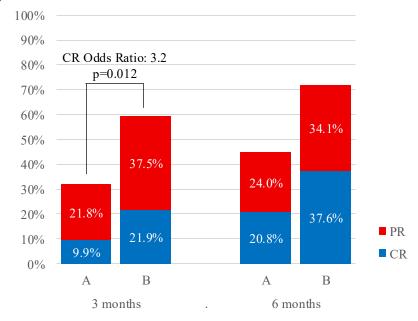

 Inclusion period: July 2015 - April 2019

 Patients: 205 treatment naïve patients enrolled in 6 countries and 24 sites

Median Follow-up: 24 months



# **RACE flow chart**




# **Baseline characteristics**

|                               | Arm A       | Arm B      | Total       |
|-------------------------------|-------------|------------|-------------|
| No. of patients               | 101 (51.3%) | 96 (48.7%) | 197 (100%)  |
| Age (median, min-max)         | 52 (15-81)  | 55 (16-77) | 53 (15-81)  |
| Age categories (n, %)         |             |            |             |
| <18 y                         | 7 (6.9%)    | 2 (2.1%)   | 9 (4.6%)    |
| 18-<40                        | 29 (28.7%)  | 27 (28.1%) | 56 (28.4%)  |
| 40-<65                        | 43 (42.6%)  | 43 (44.8%) | 86 (43.7%)  |
| >65                           | 22 (21.8)   | 24 (25.0%) | 46 (23.4%)  |
| Sex (n, %)                    |             | , , ,      |             |
| Male                          | 52 (51.5%)  | 56 (58.3%) | 108 (54.8%) |
| Female                        | 49 (48.5%)  | 40 (41.7%) | 89 (45.2%)  |
| Severity of AA (n, %)         | , ,         | , ,        |             |
| SAA                           | 67 (66.3%)  | 62 (64.6%) | 129 (65.5%) |
| vSAA                          | 34 (33.7%)  | 34 (35.4%) | 68 (34.5%)  |
| PNH granulocytes >1.0% (n, %) | 44 (44.9%)  | 33 (35.5%) | 77 (40.3%)  |

# Hematological response

- The RACE study was powered to detect an increase in CR from 7% in arm A to 21% in arm B at 3 months (primary endpoint).
- CR at 3 months\*:
  - o Arm A: 9.9% & Arm B: 21.9%
  - Pooled Odds Ratio 3.2, p=0.012
- OR at 6 months (preliminary analysis n=181)\*:
  - Arm A: 44.8% & Arm B: 71.8%
  - Pooled Odds Ratio: 3.7



<sup>\*</sup>Prior transplantation, clonal evolution or death were considered as no response at 3 and 6m

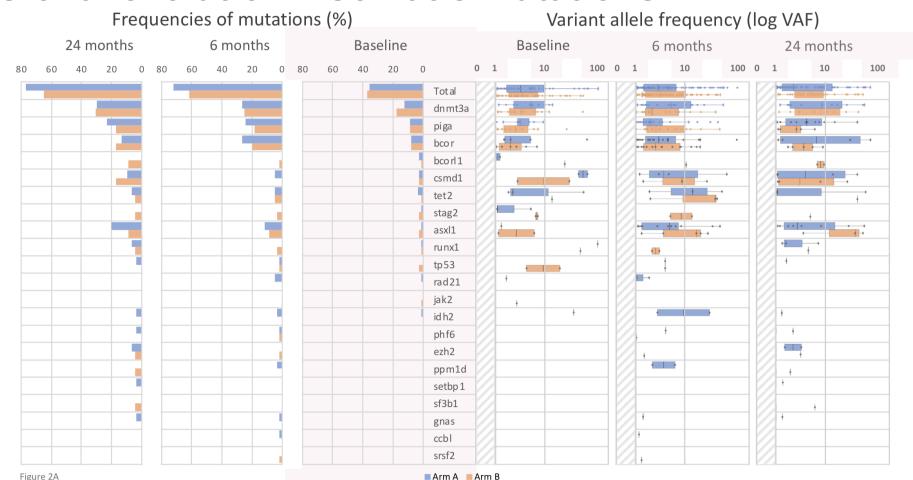
# Hematological response (NIH criteria)

### NIH criteria = PR: transfusion independency not needed

|              | Res        | ponse at 3 mo | onths         | Response at 6 months |                              |               |  |
|--------------|------------|---------------|---------------|----------------------|------------------------------|---------------|--|
|              | hATG + CsA | hATG + CsA    | OR            | hATG + CsA           | hATG + CsA +                 | OR            |  |
|              | (Arm A)    | + EPAG        | (95%CI)*      | (Arm A)              | EPAG                         | (95%CI)*      |  |
|              |            | (Arm B)       | (p-value)     |                      | (Arm B)                      | (p-value)     |  |
| CR           | 10 (9.9%)  | 21 (21.9%)    | 3.2 (1.3-7.8) | 20 (19.8%)           | 30 (31.6%)                   | 2.3 (1.1-4.7) |  |
|              |            |               | (p=0.012)     |                      |                              | (p=0.019)     |  |
| PR           | 55 (54.5%) | 51 (53.1%)    |               | 47 (46.5%)           | 44 (46.3%)                   |               |  |
| No response  | 33 (32.7%) | 22 (22.9%)    |               | 34 (33.7%)           | 20 (21.1%)                   |               |  |
| Unclassified | 3 (3.0%)   | 2 (2.1%)      |               | 0 (0.0%)             | 1 (1.0%)                     |               |  |
| CR+PR (OR)   | 65 (66.3%) | 72 (76.6%)    | 2.2 (1.1-4.4) | 67 (66.3%)           | 66.3%) 74 (78.7%) <b>2.2</b> |               |  |
|              |            |               | (p=0.033)     |                      |                              | (p=0.026)     |  |

Cohort 2 NIH (EPAG day 14 > 3 months): CR 26%, PR 61%, OR 87% at 6 months

# Safety


|                                                                            | Arm A | Arm B | Total |
|----------------------------------------------------------------------------|-------|-------|-------|
| Serious Adverse Events*                                                    | 135   | 145   | 280   |
| Fatal cases                                                                | 14    | 8     | 22    |
| Patients coming off study treatment prematurely requiring second line HSCT | 13    | 11    | 24    |
| Pregnancy                                                                  | 3     | 1     | 4     |

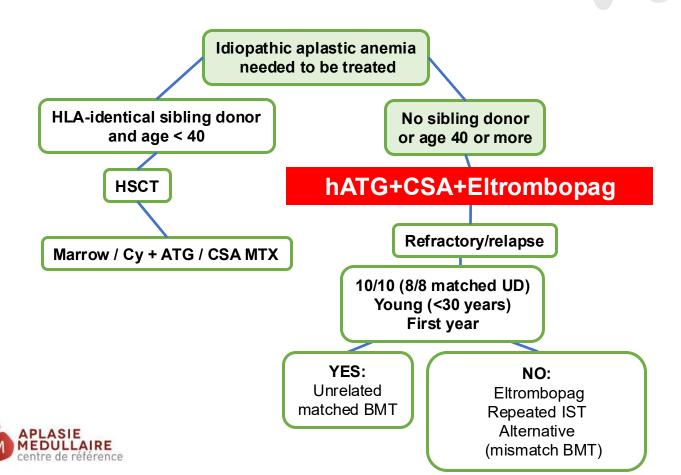
<sup>\*</sup>Events are classified per SOC (system organ class) according to the CTCAE (Common Terminology Criteria for Adverse Events (US National Cancer Institute of the National Institutes of Health).

# Clonal evolution – myeloid malignancy

| Ar<br>m | Age | Age | AA          | Cytogene                                           | tics/Karyotypic al                                                                         | onormalities  | CE  | MDS                                      | somatic mutati                              | ons +VAF      |         | Res<br>se | spon | Relap<br>se |
|---------|-----|-----|-------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|---------------|-----|------------------------------------------|---------------------------------------------|---------------|---------|-----------|------|-------------|
|         |     |     | Baseline    | 6 months                                           | 24 months                                                                                  |               |     | Baseline                                 | 6 months                                    | 24<br>months  | 3<br>mo | 6<br>mo   |      |             |
| A       | 58  | SAA | 46XY        | 46, XY, +Y, -<br>7[4]/46, XY[11]                   |                                                                                            | Yes-<br>6 mo  | No  | BCOR 0.1%,<br>DNMT3A 1.24%,<br>TET2 0.1% | BCOR 5.01%,<br>DNMT3A 13.24%<br>TET2 13.29% | NST           | PR      | CE        | Yes  |             |
| В       | 19  | SAA | 46,XX[16]   | Not done or failed<br>(del13q at 12 &18<br>months) | Normal                                                                                     | Yes-<br>12 mo | Yes | PIGA 7.74%                               | PIGA 7.15%                                  | NST           | PR      | CR        | No   |             |
| В       | 62  | SAA | 46,XY [15]  | 46,XY,-<br>13(q13q34)[2]/<br>46,XY[18]             | Unknown<br>(persistent del13q at<br>12 and 18 months)                                      | Yes-<br>6 mo  | No  | No mutations                             | No mutations                                | NST           | NR      | NR        | No   |             |
| Α       | 67  | SAA | 46, XY [20] | 45,X,-<br>Y[3]/46,XY[17]                           | 46,XY,del(7)(q22q3?<br>2)[7]<br>/46,XY[18]<br>(No del7q detected 6<br>and 12 months later) |               | No  | No mutations                             | No mutations                                | BCOR<br>1.97% | NR      | NR        | No   |             |

### **Clonal evolution – somatic mutations**




# **Fatal cases**

| Cause of death                                       | Arm A | Arm B | Total |
|------------------------------------------------------|-------|-------|-------|
| Hemorrhages                                          | 2     | 0     | 2     |
| Infections                                           | 9     | 4     | 13    |
| Salvage treatment                                    | 1     | 0     | 1     |
| Others:                                              | 2     | 4     | 6     |
| Acute Respiratory Distress Syndrome                  | 0     | 1     | 1     |
| Aortic valve disease                                 | 0     | 1     | 1     |
| Concomitant lung cancer                              | 1     | 0     | 1     |
| <ul> <li>Encephalopathy of unknown origin</li> </ul> | 1     | 0     | 1     |
| Tamponade                                            | 0     | 1     | 1     |
| Thrombosis                                           | 0     | 1     | 1     |
| Total                                                | 14    | 8     | 22    |

# **Conclusion - Perspectives**

- EPAG, when added to standard IST (hATG and CsA), significantly increases the rate of CR at 3 months in untreated patients with SAA with no safety concern at time of analysis (18 months median follow-up).
- Somatic myeloid mutations assessment (on going): high sensitivity next generation sequencing analysis was performed at baseline, 6 months and 24 months using a 31 gene target molecular bar coded panel central analysis (central analysis at King's College, London).
- Clonal evolution occurs 10-15 years after the diagnosis of aplastic anemia; the Long term follow-up study (RACE-2) is being set-up to answer this question in the future

## **Treatment (guidelines)**



### **Patient case**

- Male, 17 years old
- Aplastic anemia:
  - Hb: 4.8 g/dL; Neutrophils:  $0.75 \times 10^9$ /L; Platelets:  $11 \times 10^9$ /L; Reticulocytes:  $35 \times 10^9$ /L)
  - Cytogenetics showed a normal male karyotype
  - Hypocellular bone marrow (<5%) with no dysplasia</li>
- Acquired:
  - Normal CBCs 10 years before
  - No family history
  - Normal physical exam
  - PNH positive (3%) FA & Telomeropathy negative

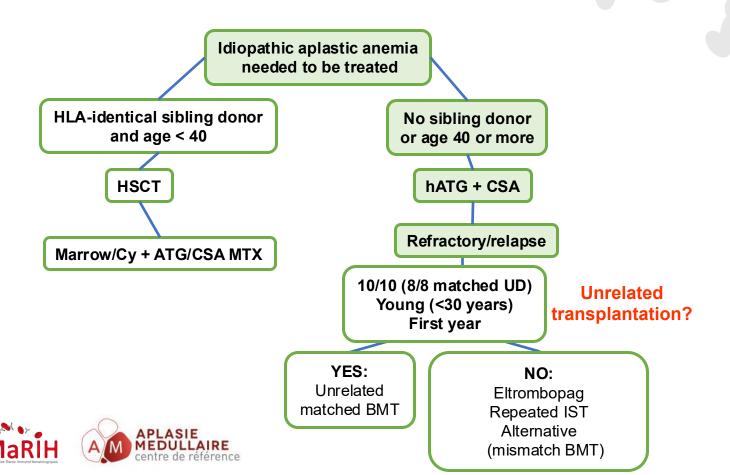
Refractory at 6 months ...



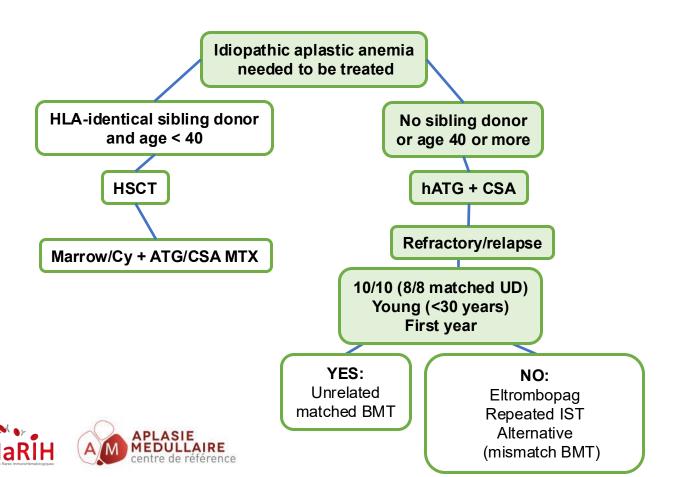


### **Patient case**

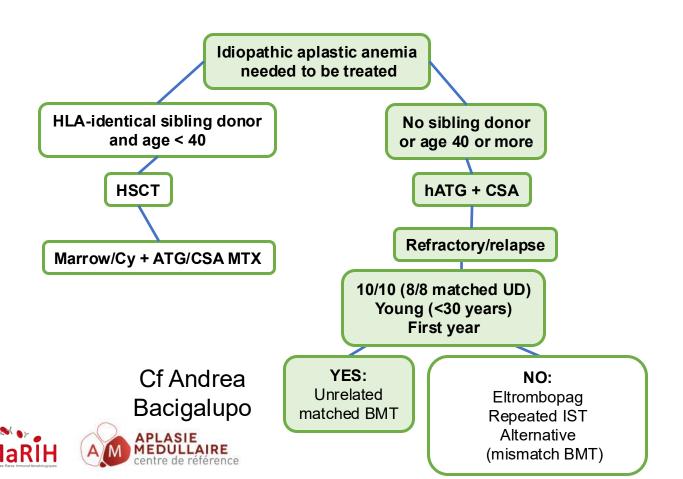
- Male, 17 years old
- Aplastic anemia:
  - Hb: 4.8 g/dL; Neutrophils:  $0.75 \times 10^9$ /L; Platelets:  $11 \times 10^9$ /L; Reticulocytes:  $35 \times 10^9$ /L)
  - Cytogenetics showed a normal male karyotype
  - Hypocellular bone marrow (<5%) with no dysplasia</li>
- Acquired:
  - Normal CBCs 10 years before
  - No family history
  - Normal physical exam
  - PNH positive (3%) FA & Telomeropathy negative


Refractory at 6 months ...

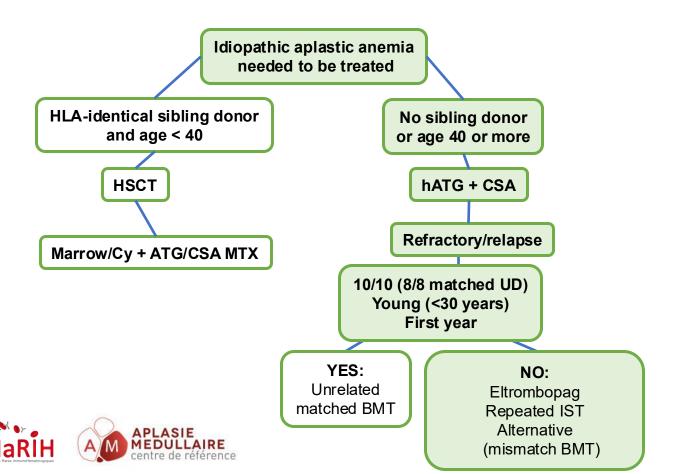
Inherited disorders?
Clonal evolution?



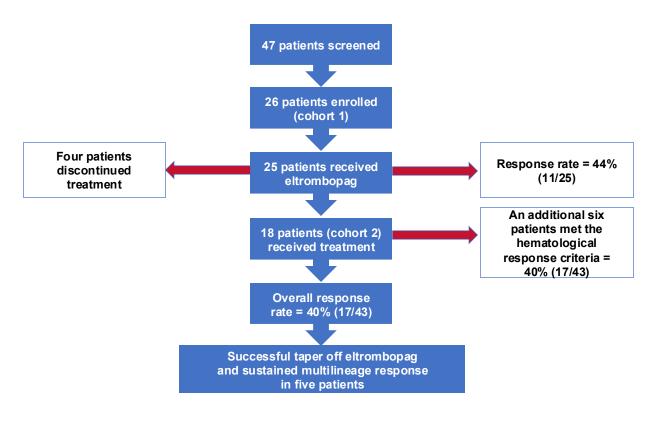




### **Treatment (guidelines)**



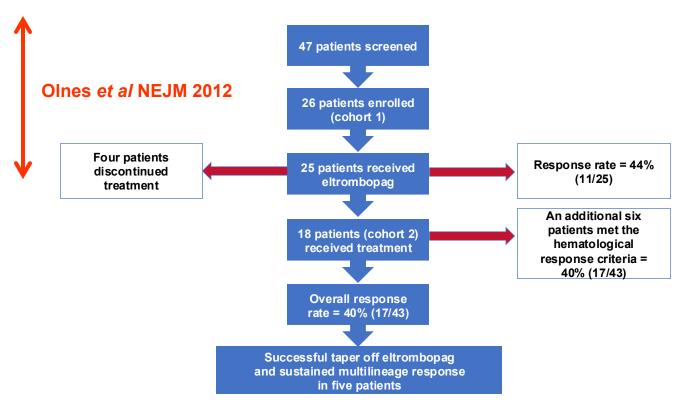

### **Treatment (guidelines)**




# **Treatment (guidelines)**

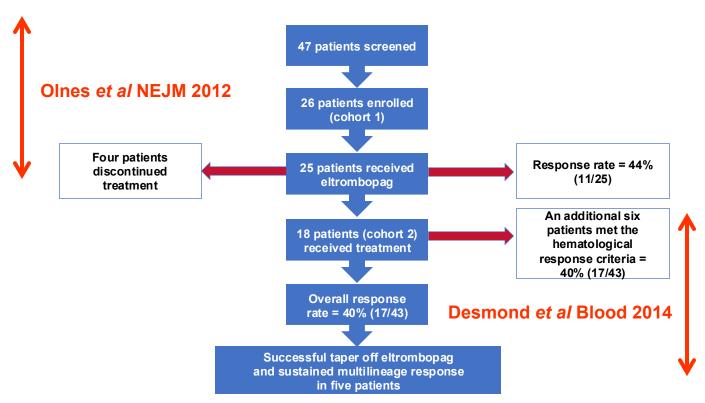


## **Treatment (guidelines)**




# Response rate

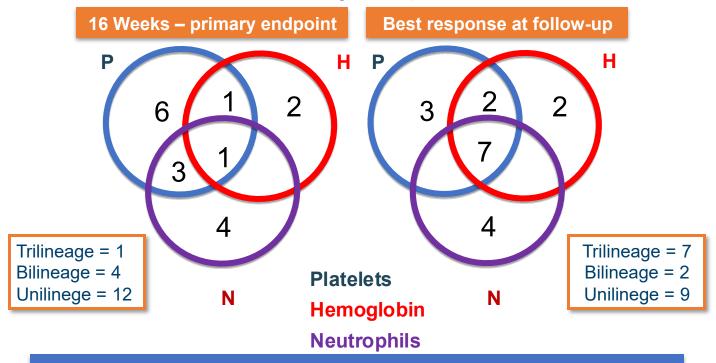





# Response rate






# Response rate





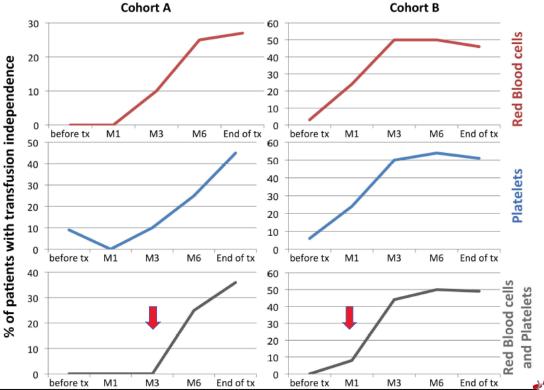
# Phase II study of eltrombopag in refractory AA

Mutlilineage responses



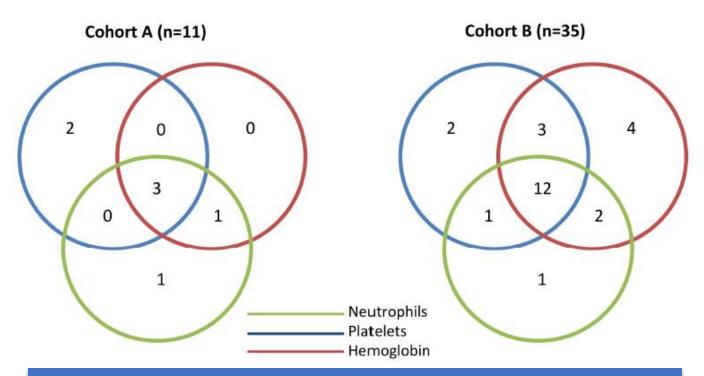
Durable multilineage responses are possible after treatment with eltrombopag in refractory AA Patients can become red blood cell and platelet transfusion independent

French experience - patients characteristics


- ATG-naïve patients (Cohort A, n=11)
- Refractory patients (Cohort B, n=35)
- Disease characteristics:

|                             |                |                            | Cohort A          | 3 Cohort B        | p-value |
|-----------------------------|----------------|----------------------------|-------------------|-------------------|---------|
| no. (%) [IQR]               |                |                            | 11                | 35                |         |
| Demographic characteristics |                |                            |                   |                   |         |
| _                           | Age at diagno  | sis (y)                    | 73.7 [60.9, 77.5] | 53.4 [26.3, 67.3] | 0.003   |
| -                           | Age at ELT ini | tiation (y)                | 74.1 [67.4, 78.0] | 55.3 [35.9, 68.5] | 0.003   |
| _                           | Male (%)       |                            | 4 (36.4)          | 21 (60.0)         | 0.298   |
| _                           | Aplastic anem  | nia characte ristics       |                   |                   | 0.152   |
| _                           |                | Idiopathic, no PHN clone   | 4 (36.4)          | 23 (65.7)         |         |
| _                           |                | Idiopathic, with PHN clone | 6 (54.5)          | 11 (31.4)         |         |
| _                           |                | Dyskeratosis congenita     | 1 (9.1)           | 1 (2.9)           |         |






French experience – response rates





French experience - type of response



Durable multilineage responses are possible after treatment with eltrombopag in refractory AA Patients can become red blood cell and platelet transfusion independent

Lengliné et al, Haematologica In press

French experience - main messages

## Safety

- 1 SAE (liver toxicity)
- Clonal evolution (lack of follow-up ...)

### • Response rate = 40%

- 3 months for refractory patients; 6 months for 1st line
- Multi-lineage response = 30% among responders

#### Of note

- 20% of non responders responded at a higher dose (225 mg\*)
- Possible drug discontinuation (if robust response)
- Second IST including ATG (Revolade-ATG-CSA) lead to excellent results in refractory patients (response rate = 100% but n=8)





### Treatment stop

#### Robust responders\*

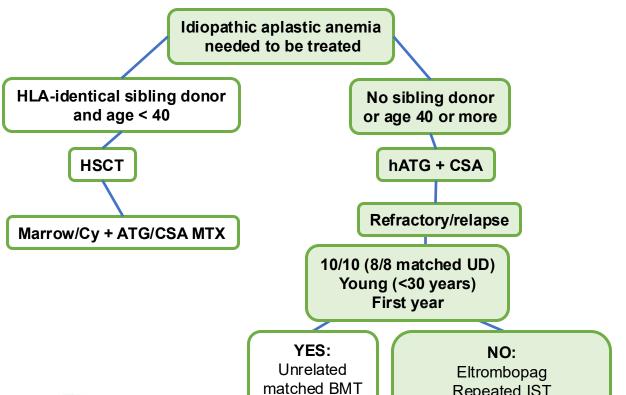
- Platelets >50×10<sup>9</sup>/L
- Hb >10 g/dL
- Neutrophils >1×10<sup>9</sup>/L
- >8 weeks

Decrease dose by 50%



Counts remain above limits for **8 weeks** 




Discontinue drug

Demond R et al. Blood 2014;123:1818–1825;

- 15 Patients stopped for ELT failure
- 1 Patients stopped for toxicity
- 4 Patients were able to taper and discontinue ELT treatment if they met the trilineage hematopoiesis criteria for >8 weeks
  - Four patients (n=46) fulfilled these criteria
  - All had eltrombopag tapered successfully to off drug
  - All remain in remission after a follow-up off drug of 7, 12, 24 and 27 months



# **Treatment (guidelines)**







Repeated IST **Alternative** 

(mismatch BMT)

Cf Andrea Bacigalupo

### **Conclusion**

## First line treatment:

- MRD = choice treatment 1st line for patients of <u>40</u> years old or less
- MUD 1st line is still experimental (<u>only pediatric</u>)
- hATG+CSA+Eltrombopag for the others

# Refractory patients:

- MUD for patients with refractory AA of <u>30</u> years old or less is standard of care
- Alternative BMT mainly for young patients (<u>20</u> year or less)
- Eltrombopag for the others (if no already used first line)

# Thank you!

#### The French Reference Center for aplastic anemia and PNH in Paris







Saint-Louis Hospital

Robert Debré Hospital

Institute of Hematology, IUH St-Louis

F Sicre, T Leblanc, JH Dalle, A Baruchel, G Socié, N Vasquez, W. Cuccuini, J Soulier (Fanconi team), C Kannengiesser, E Lainey, L Da Costa (Telomeres team)







